
a Fermi National Accelerator Laboratory

TM-1508

Finite State Tables for
General Computer Programming Applications

Mark Leininger
Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

January 1988

a Operaled by Universities Research Association Inc. under contract with the United States Department of Energy

Finite State Tables for
General Computer Programming Applications

Mark Leininger
January, 1988

Abstract

The Finite State Table is a computer programming technique which offers a
faster and more compact alternative to traditional logical control structures
such as the IF-THEN-ELSE statement. A basic description of this technique
is presented. The application example is the creation of plot output from
engineering analysis and design models generated by I-DEAS’, a commercial
software package used for solid modeling, finite element analysis, design and
drafting.

*
I-DEAS is a registered trademark of Structural Dynamics Reaearch Corporation.

Page 2

1. Introduction

The Finite State Table (FST) has found uses in the areas of language
compilers and artificial intelligence. Although the application areas which most
effectively exploit the power of the FST and rely most heavily on its use are
themselves quite complex, the FST itself is a very simple and straightforward
concept. Because the FST depends heavily on the use of pointers, it is most
effectively implemented in languages like C or Pascal. However, the concept
could be applied in Fortran applications as well. The application examples in
this paper will be in C. The specific comparison will be between the FST and
IF-THEN-ELSE structure.

2. Conceptual Model of the FST

The easiest way to explain the FST is by a simple example. Figure 1 is the
FST for a coffee vending machine. Coffee costs fifteen cents and can be
purchased using a dime and a nickel or three nickels. No change is given so
quarters are not allowed. The two columns are labeled DepositFive and
DepositTen, representing input actions to the FST of depositing five cents and
depositing ten cents respectively. The three rows are labeled StartState,
FiveState, and TenState; they represent the three states the machine can
assume. StartState represents the starting state, the state in which a
customer finds the machine when no money has been deposited. The
FiveState and TenState represent the state of the machine after five or ten
cents have been deposited respectively. Each entry in the FST is described by
its row and column number. For consistency with later examples, row and
column numbers will begin at zero. So, StartState identifies row zero,
FiveState identifies row one; DepositFive identifies column zero, etc.

To explain the entries in the FST, assume a nickel is deposited in the
machine while it is in StartState. Looking at the entry at row zero and
column zero, you will see FiveState above a diagonal line and DoNull below
the diagonal line. FiveState represents the next state the machine will assume
when a nickel is inserted while the machine is in StartState. DoNull
represents the action the machine takss as a result of the customer depositing
a nickel. As the name implies, DoNull means the machine does nothing, it
simply moves to the next state and waits for another coin to be deposited.
Each entry in the FST consists of the next state above the diagonal line and
the resulting action below the diagonal line. Returning to the customer who
has deposited a nickel, the machine is in FiveState. If the customer deposits
a dime, the corresponding FST entry is found in row 1 (FiveState), column 1
g;~$y4. The entry indicates that the next state of the machine is

. This is correct because the customer has now deposited a total of
fifteen cents so the machine is ready to serve the next customer. The entry
also indicates that the action the machine takes is DoCoffee. As the name
implies, DoCoffee represents the

Page 3

Figure 1

Finite State Table for Coffee Vending Machine

DepositFive DepositTen

Page 4

physical action of dispensing a cup of coffee. This completes one cycle
through the FST resulting from a customer depositing a nickel followed by a
dime.

The only other entry in the FST which requires explanation is row two,
column one. This entry in the FST would be reached after a customer
accidentally deposited two dimes. Since this machine can make no change, the
FST entry indicates that the machine is to take the action DoReturn, which
returns both dimes to the customer. The next state is StartState.

3. Comparison of the FST to the IF Statement

A typical sitcation confronting the programmer is to read some input, make a
logical decision based on that input and take some appropriate action. For
example, reading the integer 0 from a plot tile may cause the pen on the
plotter to be raised; reading the integer 1 causes the pen to be lowered. The
typical way a program makes such a logical decision is with an IF-THEN-
ELSE structure. Pseudocode for such a situation would be:

read Command from plot file
if (Command = 0) then

raise pen
else if (Command = 1) then

lower pen
end if

Doing the same thing using an FST requires knowing a little about C. C
allows the definition of complex data types. In the case of finite state tables,
the data type needed is an array of pointers to functions (a function in this
context is equivalent to a subroutine in Fortran). Fortran programmers are
familiar with arrays of integer or real values, but C allows arrays of mixed,
complex data types. So, for example, an array element in C can be a pointer
to a function. The significance of this is that the logical decisions are made
ONCE at compile time rather than every time input is read at execution time.
For example, the above IF statement could be replaced by the following
pseudocode employing an FST:

read Command from input
execute TableArray [CurrentState][Command]

TableArray is a two dimensional array of pointers to functions. Assuming the
CurrentState is equal to 0, if Command is 0 the array element invoked will be
TableArray [O][O]. This array element contains a pointer to the function which
raises the pen. If Command is 1, the array element invoked will be
TableArray [0] [l]. This element points to the function which lowers the pen.
The actual syntax is more complex because the pointers have to be

Page 5

dereferenced but the important point is that no logical decision needs to be
made at execution time when using the FST; the logic is built into the table
itself at compile time. The IF statement requires a logical decision at
execution time every time an input command is read. Obviously, one of the
benefits one expects from using an FST is a significant time improvement. A
second and probably more important advantage of the FST is the compact
and concise notation which allows easy debugging. The logical flow can be
followed by stepping through the table itself rather than trying to understand
IF statements.

To compare the syntax of the FST versus an IF statement, the coffee machine
used as a conceptual model will be implemented in C using both the FST and
IF statement. Figures 2 and 3 included at the end of this document are the
source code which implements the operation of the coffee machine. Figure 2
uses the FST, figure 3 uses the IF statement. Note the portion of the code
in each case which controls the logical flow is in bold face and has been
included below for convenient reference. First the FST:

while (Coin != -1) {
TabPtr = &FstTable [CurrentState][Coin/Fi-11;
(*TabPtr->FuncPtr)(FpOutput);
CurrentState = (TabPtr->NextState);
fscanf (FpSource, “%d”, &Coin); /*

end-while */ }

Now the IF statement:

while (NextCoin != -1) {
if (TotalCoin == 5)

DoNull (FpOutput);
else if (TotalCoin == 10)

DoNull (FpOutput);
else if (TotalCoin == 15)

-DoCoffee (FpOutput);
{

TotalCoin = 0; }
else if (TotalCoin > 15) {

DoReturn (FpOutput);
TotalCoin = 0; } /*

end-if */

fscanf (FpSource, “%d”, &NextCoin);
TotalCoin += NextCoin; /*

end-while */ }

For this simple problem the two pieces of code above are relatively equal in
size but if there were a thousand decisions to make rather than just three, the
IF statement would need to be approximately 300 times longer while the FST

Page 6

would remain identical. The only change in the FST would be in the
declaration of the table itself at compile time.

For each of these examples, input is read from a file TEST.DAT and the
output, consisting simply of printing the action to be taken, is written to a
file ACTIONS.DAT. The end of the input is signaled by a -1 as data. For
example, the following two lines of input:

555
-1

would result in the following three lines of output:

*** DoNull ***
*** DoNull ***
*** DoCoffee ***

4. Application Example

I-DEAS is an engineering software package which produces a generic plot file
called a structured picture file. To generate hardcopy plots, a variety of
devices is used, including laser printers and pen plotters. A package of
graphics subroutines is available which allows the creation of a device specific
plot file simply by linking different device drivers. The application for the
FST is to read the structured picture file and invoke the appropriate graphics
subroutines to generate a device specific plot file which can be used to
produce hardcopy. A detailed description of the structured picture file can be
found in the I-DEAS User’s Guide, page 513-531. A simple example of the
commands in the structured picture file is:

0 2 4 6 0
0 0 1 1
1 .oooooo 0.772727 0.000000 0.000000 1.000000
0.772727

The above command contains information on the size of the graphics and text
areas. The first two integers, 0 and 2, indicate the command class and
command number respectively. These uniquely define what action needs to be
taken and are the basis for the construction of the finite state table. The
next three integers, 4 6 0, indicate that the following data consists of 4
integers, 6 reals, and 0 characters. The data itself then follows. The actual
commands involved will not be discussed further. Figure 4 is a portion of the
FST required for this application. Figure 5 contains the portion of the code
which actually implements the FST. The functions themselves have not been
included in Figure 5 because they are simply graphics routines.

Page 7

The point to notice is that although this example is quite complex, the FST
in Figure 4 presents the logic in an easy to understand way. The portion of
the code required to process a structured picture file is bold faced in Figure 5;
it is reproduced here for convenience:

while (CurrentState != EOFState) {
fscanf

I
FpSource, “%d”, &CurrentState);

fscanf FpSource, “%d”, &CommandNumber);
TabPtr = &F&Table [CurrentState][CommandNumber];
(*TabPtr->FuncPtr)(FpSource, FpOutput);
CurrentState = (TabPtr->NextState); /*

end-while */ }

This same logical control would require several pages of IF statements. Note
that the declarations in the source code in Figure 5 needed to initialize the
finite state table are quite long. These declarations can be incorporated into
an include statement to reduce the apparant size of the actual code.

5. Su-ary

The finite state table is an alternative way to provide logical control within a
program and, as the complexity of the logic increases, offers the following
advantages over other structures like the IF statement:

5.1 Compact notation;
5.2 Easy for programmer to follow program flow and debug;
5.3 Logic is incorporated at compile time rather than execution time.

Page 8

Figure 2

Source code for the FST implementation of coffee machine

#include <atdio.h>

#d&m NunRow 3
#detine Nun&M 2

#define St&State 0
#define FiveState 1
#define TenState 2

hLE ‘FpSource;
FILE ‘FpOutput;

int CurrentState=O,
int Coin;

/*** Declare functions used by finite atate table ***/

int

atruct Table
{

int NextState;

}
int (‘FuncPtr)

FatTable[NumRmv] NunGall = Y;

1. /’ Start structure initialirstion ‘/
/’ begin row 1, StartState l /

FiveState, DoNull },
TenStats, DoNull }

/’ end mw 1 ‘/

:. I

J’ begin row 2, FiveState ‘/
TenState, DoNull
startstate, Docoffee

1’ end row 2 ‘1
I’

1;
:I

s{z;t; ry%&.y- ‘I

startstate.: DoReturn
/’ end row 3 ‘/

1’

/’ end structure initialiaation ‘/

(continued on next page)

Page 9

struct Table ‘TabPtr;

FpOutput = fopen (“ACTIONS.DAT’, 5”);
FpSowce = fopen (“TEST.DAT”, “I’);

fscanf (FpSowce, “%d”, k&in);
while (Coin != -1) {

TabPtr = BFntTable [CnrrcntState][Co~/S-11;
(‘TabPtr->FuncPtr)(FpOntpnt)I
CurrentState = (TabPtr->NextState);
fseanf (FpSowce, “%a”, &Coin); /’

end while ‘/ } -

fcloae FpSome); /’
fclose Fpoutput); I /’

end main */)

--* I
FILE ‘Fpl;
{
fprintf (Fpl, “\t*** DoNuIl l **\nn);
1

DoCoffee (Fpl)
/*===:,

FILE l Fpl;
{
fprintf (Fpl, “\t*** DoCoffee ***\I?’);
1

DoReturn (Fpl)
/‘===a,

FILE ‘Fpl;
{
fprintf (Fpl, =\t*** DoRaturn l **\n*);
1

Page 10

Figure 3

Source code for IF implementation of coffee machine.

#include <atdio.h>

=Jw ~,==‘l

kILE ‘FpSource;
FILE l FpOutput;

int TotalCoin, Next∈

FpOutput = fopen (‘ACTIONS.DAT”, “w=);
FpSource = fopen (nTEST.DAT”, V’);

fscanf (FpSouns, ‘%d”, &NextCoin);
TotalCoin = NextCoin;

while (NextCoin l= -1) {

If (TotalCoin == 6)
DoNull (FpOntpnt);

elm.? If (TotaICoin == 10)
DoNull (FpOntpnt);

else lf (TotalCoIn == 16) {
DoCoffee (FpOntpnt);
TotaIColn = 0;)

else if (TotrlCoin > 16) {
DoReturn (FpOntpnt);
TotaIColn = 0; } /*

and-V ‘/

bclllr (FpSonree, “%d”, ONatCoin);
TotaICoin += NatColq j’

end_nhUe l / }

fclole
t

FpSource);
fclws Fpoutput); /’

end main ‘/ }

I

~~~~~~~~~‘================================================$l 
fprintf ( Fpl, m\t**’ DoCoffee ***\n- ); } 

DoFfatum ( Fpl ) 
/‘=========================================================~l 
FILE ‘Fpl; { 
fprintf ( Fpl, “\t*** DoReturn ***\rP ); } 



Page 1 I 

Figure 4 

FST for application example 

GraphPrimState GraphPrimState 

GraphAttrState GraphAttrState 

RasterState RasterState 

AnimateState AnimateState 

DoErrOr DoErrOr DoNull DoNull DONUll DONUll DONUll DONUll DoNull DoNull 



Page 12 

#include <atdio.h> 

#define NumRaw 6 
#detine NumCol15 

#define St&State 
#define ControlState 1 
#defme GraphPrimState 
#define GraphAttrState 
#define RMterState 
#defme Animc.teState 5 
#define EOFState 

Figure 5 
Source code for application example. 

------------------------------------------------------ ------------------------------------------------------ 

begin main ‘/ { 

FILE *FpSourca; 
FILE ‘FpOutput; 

int CurrentState; 
int Co mmandNumber; 

/*** Declare functiona used by finite state table l **/ 
int 

/*‘a Control commanda *a*/ 
DoDi~playInfo(), 
DoSollrceDdnfo(), 
DoViewPortDef(), 
DoGmphContext(), 
~~~F~p4)I 

I**’ Graphic Primitive Commanda *“I
DoPolyLine(),
DoPolyMark(),
DoPolyGon(),
DoTextOutput(),
DohO,

(continued on next page)

Page 13

/*** Graphic Attribute Commands I**
I

/“’ Rmter Data Co nunan& not implemented *‘*I

I”’ Animation Conman da not implemented l ‘*/
/*** Mlacellaneow Commands *,*/

atruct Table
(:

int NextState;

} F%~bl$?~v!](&mCc,l] =

{
{

J’ Start structure initialiration ‘/
,/o’,ttga;~;ol,~-tSt~te ;I

GraphPrimSLte, DoNull ’
GraphAttrState, DONUll
RanterState, DoNull h

1:

AnimateState, DONUll
EOFState,

1,

EOFState,
EOFState,
EOFStste,
EOFState,
EOFStste,
EOFStste,
EOFState,
EOFState,

h
EOFState,

1’ end row 1 ‘/

(continued on next page)

Page 14

I 1’ begin row 2, ContmlState ‘J
EOFStste, DO!&01
StartState, DoDisplayInfo
StartState, DoSourceDevfnfo
StartState, DoNull
StartState, DoViewPortDef
StartState, DoGraphContext
St&State, DoClipPort },
EOFState, DoEOF
EOFStste, DoError
EOFStste, DoError
EOFStste, DO!&r.X
EOFStste, DOError
EOFState, DoErrOr
EOFStste, DoError
EOFState, DOErr

13 1’ end row 1 ‘J

1 JGF’g ~;;~;phP=i~tate ‘I),

StartState: DoPolyLine },
StartState, DoPolyMark

DoPolyGon },
1,

StartState,
StartState, DoTextOutput
StartState, DoAl.
EOFState, DOError
EOFState, D0ErI.X
EOFStata, D0Ermr
EOFState, D0EtIVr
EOFState, DOErrOr
EOFState, DOErrOr
EOFState, D0EklUr
EOFState, DaFarmr
EOFState, Darmr

h J’ end row 3 ‘/

{
A;,:2 DC&W

row 4 GraphAttrState l /
StsrtState~ DoResetAttr
StartState,
StartState,

pJ;rJ:~~ },
I:

StartState, DoCharGap
StartState, DoCharPath
StartState, DoLineStyle
StartState, DohhrkSymbol
StartState, Doh4arkSise 1
startstate, DohtStyle
StartState. DoFxtStyle I: ’

DoLineColor
DoFillColor },
DoMarkColor
DoTextColor

StartState;
startstate,
startstate,
StartState,

Page 15

17 1’ end row 4 ‘/

d3 * bep row 5, RanterState
FStste, DoError

St&State, DoNull startstate, ;:a$
startstate,
StartState, DoNull
EOFState, DoError
EOFState, DoError
EOFState, DoError
EOFState, DoError
EOFState, DoEktor
EOFState, DoError
EOFState, DoError
EOFState, Do&or
EOFState, DoError
EOFStste, DoError

1’ end row 5 ‘/

‘/

{
LF!Z

rowD~~hne.teState ‘I

StartStad, &Null
StartState, DoNUll
StartState, DONUll
StartState, DONUll
StartState, DaNnIl
StartState, DoNull
EOFStste, D&mar
EOFStste, DoError
EOFStste, DoError
EOFState, DoError
EOFStata, DoJ%rror
EOFState, LhError
EOFStste, DoError
EOFStste, DoError

h
1 /* end row 6 ‘/

/’ end hucture initialimtion ‘1

atrmct Table l TabPtr;

FpSource = fopen (‘TEST.PIC”, ‘r”);

whi~scXrrentState I= EOFState) {
FpSonrce, “%d”, ECnrrentState)J

fmxrlf FpSouree, “%d”, OComrmndNwnber);
TabPtr = &PstTable [CwrentSt~te][CommandNmnber];
(*TabPtr>FuncPtr)(FpSooree, FpOntpnt)J
CurrentState = (TabPtr->NextState); /’

end-whlk ‘/ }

fclose (FpSowe); /’

end main ‘/)

